
Compilers	
CMPT	432

Project	Two	 ©	2004-2018	Alan	G.	Labouseur,	All	Rights	Reserved	 Page	� 	of		�1 3

Project 1. Project	one	working	perfectly.		
2. Write	a	recursive	descent	parser	and	add	it	to	your	compiler.	The	parser	

must	validate	the	tokens	you	lexed	from	project	one.	
3. While	parsing,	create	a	concrete	syntax	tree	(CST).	If	parsing	is	

successful	(i.e.,	no	errors	were	found)	then	display	the	CST.	Make	it	neat	
and	pretty.

[−∞	if	not]	
[50	points]	

[50	points]

Notes	and		
Requirements

• Your	compiler	must	compile	several	programs	in	sequence.	As	with	your	lexer,	each	
program	must	be	separated	by	the	$	[EOP]	marker	in	the	source	code.	

• Do	not	attempt	any	semantic	analysis	for	this	project.	No	type	checking,	no	scope	
checking,	no	AST…	save	it	for	the	next	project.	

• Provide	both	errors	and	warnings.	Warnings	are	non-fatal	mistakes	or	omissions	that	
your	compiler	can	and	will	correct.	

• When	you	detect	an	error,	report	it	in	helpful	and	excruciating	detail	including	where	it	
was	found,	what	exactly	went	wrong,	and	how	the	programmer	might	Zix	it.	

• When	there	are	errors	detected	in	lex,	do	not	continue	to	parse.	
• When	there	are	errors	detected	in	parse,	so	not	display	the	CST.	
• Include	verbose	output	functionality	that	traces	the	stages	of	the	parser	including	the	
construction	of	the	symbol	table.	

• See	examples	on	the	next	page	for	details	and	ideas.

Other	
Requirements

Create	several	test	programs	that	cause	as	many	different	types	of	errors	as	you	can	in	
order	to	thoroughly	test	your	code.	(Keep	thinking	about	code	coverage).	Include	several	
test	cases	that	show	it	working	as	well.	Write	up	your	testing	results		(informally)	in	a	
document	in	your	Git	repo.

Your	code	must	…		
• separate	structure	from	presentation.	
• be	professionally	formatted	and	still	show	your	uniqueness	
• use	and	demonstrate	best	practices.	
• make	me	proud	to	be	your	teacher.

[−∞	if	not]

Hints Remember	the	utility	of	comments	and	how	much	their	presence	and	quality	affect	my	
opinion	of	your	work.

Labs Labs	3,	4,	and	part	of	6	focus	on	the	components	of	this	project.

Submi9ng	
Your	Work

Make	many	commits	to	GitHub.	I	do	not	want	to	see	one	massive	“everything”	commit	
when	I	review	your	code.	(It’s	−∞	if	you	do	that.)	Commit	early	and	often.	And	make	sure	
your	commit	messages	are	descriptive,	informative,	and	—	if	possible	—	entertaining.	
E-mail	me	the	URL	to	your	private	GitHub	master	repository.	Remember	to	add	me	
(Labouseur)	as	a	collaborator.	Please	send	this	to	me	before	the	due	date	(see	our	
syllabus).

	Project	Two	-	100	points

mailto:alan@labouseur.com?subject=OS%20iProject%20link%20on%20GitHub


Compilers	
CMPT	432

Input	file: {}$	

	 	 	 {{{{{{}}}}}}$	

	 	 	 {{{{{{}}}	/*	comments	are	ignored	*/	}}}}$	

	 	 	 {	/*	comments	are	still	ignored	*/	int	@}$ 

Output	to	screen: 

DEBUG:	Running	in	verbose	mode	

LEXER:	Lexing	program	1...	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"$"	-->	[EOP]	
LEXER:	Lex	completed	successfully	

PARSER:	Parsing	program	1...	
PARSER:	parse()	
PARSER:	parseProgram()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	Parse	completed	successfully	

CST	for	program	1…	
<Program>		
-<Block>		
--[{]	
--<Statement	List>	
--[}]	
-[$]	

LEXER:	Lexing	program	2...	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"$"	-->	[EOP]	
LEXER:	Lex	completed	successfully	

PARSER:	Parsing	program	2...	
PARSER:	parse()	
PARSER:	parseProgram()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	

PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	Parse	completed	successfully	

CST	for	program	2…	
<Program>		
-<Block>		
--[{]	
--<Statement	List>		
---<Statement>		
----<Block>		
-----[{]	
-----<Statement	List>		
------<Statement>		
-------<Block>		
--------[{]	
--------<Statement	List>		
---------<Statement>		
----------<Block>		
-----------[{]	
-----------<Statement	List>		
------------<Statement>		
-------------<Block>		
--------------[{]	
--------------<Statement	List>		
---------------<Statement>		
----------------<Block>		
-----------------[{]	
-----------------<Statement	List>	
-----------------[}]	
--------------[}]	
-----------[}]	
--------[}]	
-----[}]	
--[}]	
-[$]	

Project	Two	 ©	2004-2018	Alan	G.	Labouseur,	All	Rights	Reserved	 Page	� 	of		�2 3



Compilers	
CMPT	432

LEXER:	Lexing	program	3...	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"$"	-->	[EOL]	
LEXER:	Lex	completed	successfully	

PARSER:	Parsing	program	3...	
PARSER:	parse()	
PARSER:	parseProgram()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatement()	
PARSER:	parseBlock()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	parseStatementList()	
PARSER:	ERROR:	Expected	[EOL]	got	[RBRACE]	with	value	'}'	on	line	0	
PARSER:	Parse	failed	with	1	error	

CST	for	program	3:	Skipped	due	to	PARSER	error(s).	

LEXER:	Lexing	program	4...	
LEXER:	"{"	-->	[LBRACE]	
LEXER:	"int"	-->	[TYPE]	
LEXER:	ERROR:	Unrecognized	Token:	@	
LEXER:	"}"	-->	[RBRACE]	
LEXER:	"$"	-->	[EOL]	
LEXER:	Lex	completed	with	1	error	

PARSER:	Skipped	due	to	LEXER	error(s)		

CST	for	program	4:	Skipped	due	to	LEXER	error(s).

Project	Two	 ©	2004-2018	Alan	G.	Labouseur,	All	Rights	Reserved	 Page	� 	of		�3 3


